Bridging the Open Web and APIs: Alternative Social Media
Alongside the Corporate Web

JACK JAMIESON, University of Toronto, Canada

DRAFT July 17, 2019. NOT FOR CIRCULATION OR CITATION.

What compromises and challenges occur when alternative social media rely on corporate platforms with
which they have philosophical and material differences? This question is explored in an empirical study of the
IndieWeb, a community of personal websites with social networking features, including the ability to syndicate
content to and from corporate social media platforms using their Application Programming Interfaces (APIs).
I study the development history of Bridgy, a tool for this syndication, and identify three main challenges
arising from its relationship with Facebook: Difficulty translating between the open Web and APIs; occasional
ambiguity in Facebook’s presentation of privacy settings; and ongoing precarity due to API updates. Bridgy’s
responses to these problems illuminate power relationships between platforms and third-party developers.
This raises considerations for building alternative social media tools and for internet researchers who rely on
platform APIs.

1 INTRODUCTION

Recent concerns about the dominance of social media giants highlight a need to consider alternative
ways of engaging with the social Web [16, 19, 29]. In large part, objections to corporate social
media have advocated opting-out, as demonstrated by hashtag campaigns like #deletefacebook and
efforts to build alternative social media (ASM) platforms such as Diaspora and Mastodon. Given
the pervasiveness of Facebook and other corporate platforms, persuading users to leave poses a
significant challenge. Some technologists have pursued a more moderate approach, attempting to
reconfigure rather than abandon relationships with corporate social media.

This article investigates frictions and compromises that arise when ASM operates alongside
and even within the infrastructures to which they claim to provide an alternative. Specifically, I
discuss IndieWeb, a “people focused alternative to the ‘corporate web’” in which individuals create
and operate personal Web sites that function as their primary online identity [24]. IndieWeb has
developed standards, software, and practices that support peer-to-peer communication among
personal Web sites while also maintaining connections with large platforms. Rather than avoiding
corporate social media, content from personal Web sites is syndicated to Facebook, Twitter, and
other platforms, and then comments, likes, and other responses are retrieved back.

Most ASM reflect their creators’ principles above economic concerns [16] and IndieWeb is no
exception. I leverage scholarship about values and design to investigate how IndieWeb’s creators
attempt to articulate their principles in the design of technical artifacts [e.g. 15, 38]. This ‘translation’
from values to artifact is complicated by IndieWeb’s entanglement with corporate platforms through
its syndication flow. One of IndieWeb’s founders has remarked, “We still use the silos [corporate
platforms] as a distribution mechanism. We will use the tools of our competitors, of our enemies, to
further our own causes” [9]. Unsurprisingly, there have been cases where those “enemies” restricted
types or quantities of data transmission in ways that compromised IndieWeb’s goals.

The simultaneously dependent and antagonistic relationship between IndieWeb and corporate
platforms highlights the heterogeneous environment in which ASM operate. I investigate this
relationship through a study of Bridgy, a tool to syndicate content and responses between personal
IndieWeb sites and platform APIs. This paper describes Bridgy’s relationship with Facebook’s API

Author’s address: Jack Jamieson, jack.jamieson@mail.utoronto.ca, University of Toronto, Toronto, Canada.

2 Jack Jamieson

from 2014 through 2018, addressing the following questions: (1) How might IndieWeb’s goals be
challenged by its reliance on corporate APIs? (2) If problems arise, how are they addressed?

Whereas Helmond highlighted how “social media platforms are enacting their programmability
to reweave the web for social media” [20], Bridgy attempts to reconfigure the relationship between
Web and social media in a different direction. This paper highlights challenges of interoperating
between the open Web and platforms, as well as the precarity of relying on platform APIs. This will
contribute to knowledge about how to build systems that reflect their creators’ principles when
growing alongside the corporate Web.

1.1 IndieWeb

According to its website, “the IndieWeb is a community of individual personal websites, connected by
simple standards, based on the principles of owning your domain, using it as your primary identity,
to publish on your own site (optionally syndicate elsewhere), and own your data” [25]. Three reasons
are presented for using the IndieWeb instead of corporate platforms: “Your content is yours”; “You
are better connected”; and “You are in control” [24]. IndieWeb’s co-founder Tantek Celik has
asserted that these three commitments all stem from one goal: self-empowerment [10]. Individuals
are to be empowered by both owning and controlling their Web content, rather than relying wholly
on platforms for hosting. However, individuals are also to be empowered by connecting to “all
services, not just one” [24]. IndieWeb community members commonly post first to their personal
Web site, and then syndicate to a variety of other platforms.

IndieWeb’s community has produced several standards for adding social features to personal
websites. Two of the most salient for this paper are “Microformats 2,” a semantic markup language
with which one can add machine-readable context to HTML, and “Webmention,” a standard for
notifying when one webpage links to another. In combination, these standards allow a wide variety
of interactions to be communicated between individual websites, such as replies, likes, shares and
other actions familiar on social media platforms.

As described in the Webmention spec [34], if Bob uses his website to write a reply to Alice, he
can send a Webmention with the following content:

source=http://www.bob.example/post-by-bob
target=http://www.alice.example/post-by-alice

“Source” indicates a URL for the page that is sending a Webmention and “target” indicates the
recipient. If Alice wants, she may set her site up to display Bob’s reply, in which case her site will
retrieve the content from the source URL, and parse its Microformats 2 markup to determine the
type of reply. For example, Bob may add markup indicating the post is a “like”, in which case Alice’s
website may choose to display something like the following below her post content: “Bob liked this
post”

As demonstrated by this example, Alice has lots of options for what to with the Webmention she
receives. This is characteristic of IndieWeb’s structure of interoperating yet independent websites.
Rather than a single project or platform, IndieWeb consists of a plurality of standards, content
management systems, Web and mobile apps, design patterns, and other components. Standards
like Webmention, therefore, are designed to be generalizable, and can work across websites with
significantly different software and designs. Individual control over one’s website is a core aspect
of this system.

1.2 Syndicating to platforms with Bridgy

One of IndieWeb’s defining features is its emphasis on maintaining connections to platforms through
an approach called POSSE (Publish on Own Site, Syndicate Elsewhere). Although IndieWeb’s premise

Bridging the Open Web and APIs 3

is that people use their own websites as their main online presence, they do not avoid corporate
social media altogether. IndieWeb users usually syndicate content from their personal Web sites to
Facebook, Twitter, and other platforms, and then retrieve comments, likes, and other responses
back to the original post. Celik has described two advantages to this approach: 1) It allows one to
keep in touch with the many people who use popular social media platforms, 2) by aggregating
“interactions from Twitter, independent websites, and Google Plus, all in one place” one “has an
experience on his site that’s better than any silo" [9].

The most popular tool for syndicating content between IndieWeb sites and platforms is Bridgy.
As described on its website, Bridgy “pulls comments, likes, and reshares on social networks back to
your Web site. You can also use it to post to social networks - or comment, like, reshare, or even
RSVP - from your own web site” [7]. Like many IndieWeb tools, Bridgy is provided for free and is
funded out of pocket by its creator. Bridgy works by translating between popular platform APIs and
IndieWeb sites that are built with standards like Webmention, Microformats 2, and conventional
Web standards including HTTP, URLs, and HTML.

In contrast to the generalizable IndieWeb standards described earlier, APIs vary across platforms,
each allowing access to different types of data and requiring distinct methods and identifiers to
facilitate that access. Bridgy can connect to APIs for Twitter, Google Plus, Instagram, Flickr, and
GitHub, though its features for each platform vary according to constraints of individual APIs. For
example, Bridgy’s documentation [7] explains that Twitter’s search API is “best effort only” so
“every now and then [Bridgy] may not be able to find one of your replies”. Significantly, Bridgy
used to support Facebook, but this feature was shut down in August 2018 when, in response to the
Cambridge Analytica scandal, Facebook dramatically restricted their APL removing capabilities
that were necessary for Bridgy’s function.

2 LITERATURE REVIEW
2.1 Values and design

By attempting to empower individuals through the creation of software and protocols, IndieWeb
exhibits a commitment to the idea that social change can be nurtured through design work. This
demonstrates a close alignment with the commitments of values and design research for building
technologies that enhance “human well-being, human dignity, justice, welfare, and human rights”
[15].

An extensive body of scholarship in science and technology studies and information studies
has made it clear that values can be instantiated in sociotechnical systems [e.g. 43]. One of the
pressing concerns of values and design research is explaining how this occurs. Most values and
design research approaches this question with an interactional position, affirming that “whereas
the features or properties that people design into technologies more readily support certain values
and hinder others, the technology’s actual use depends on the goals of the people interacting with
it” [15]. This perspective builds upon affordance theory [17, 32], which asserts that environments
and technologies support and constrain (though do not determine) potential directions for action.
By recognizing that the actual use of a technology is shaped not only by affordances but also by
the needs and perspectives of users, the interactional perspective of values and design research
recognizes interpretive flexibility in both the design and use of technologies [38]. Technologies may
be designed to support particular values, but the realization of those values depends on the context
into which they are deployed. Further, Humphreys [23] observes that the stabilization that occurs
during a technology’s maturation is temporary, and so possibilities for intepretive flexibility can
resurface when the context surrounding a technology changes. Therefore, in addition to studying

4 Jack Jamieson

the role of values in the initial design of technologies, there is a need to address the ongoing work
involved in repairing and maintaining those values.

This is particularly clear in the realm of Web technologies, which involve a multitude of explicit
relationships to other systems, and since the advent of “Web 2.0” increasingly follow a model
of constant iterative development [33]. The ability to supplement and repurpose platforms has
been one of the great sources of promise in analyses of Web 2.0 [37, 39]. Nonetheless, developers
who build upon platforms work with an awareness that the foundations upon which they rely
may be changed or deprecated suddenly, requiring unexpected work to maintain or repair core
functions. Addressing the maintenance and repair of values in technology reframes those values
as “contingent and ongoing accomplishments” [22]. This draws attention to variety of external
pressures that can constrain values over the duration of an artifact.

2.2 Infrastructures and platforms

Highlighting contingencies around values and design shifts attention to broader infrastructures
into which ASM are embedded. Web technologies operate in heterogenous systems of protocols,
servers, software, hardware, people, policies, and other resources. This leads to “a baffling network
of relationships producing significant outcomes that no single actor seems particularly able to
foresee” [36]. As such, designers attempting to articulate values through infrastructural systems
must contend with ongoing unpredictability. Infrastructure studies and platform studies are two
closely related approaches that have been used to investigate the systems that constitute the web.
In this section, I describe how both approaches inform my analysis.

The Web as conceived by inventor Tim Berners-Lee is distinctly infrastructural [35]. It is based on
open standards such as HTML, HTTP, and URLs, which have been formed incrementally through
consensus among multiple stakeholders. It nurtures interoperability among diverse components
and resources and is embedded into daily life. When operating smoothly, infrastructural systems
tend to retreat into the background. It is typically upon breakdown that infrastructures reveal
themselves (Star, 1999). Because IndieWeb’s relationships with corporate platforms and broader Web
infrastructures involve efforts to re-purpose them in sometimes unexpected ways, breakdowns are
common. As a result, IndieWeb provides a useful site for performing an ‘infrastructural inversion’
(Star, 1999) that foregrounds the systems upon which it is built. The purpose of this inversion is not
to focus only on material parts of a system, but instead to uncover tacit labour [36] and thereby
draw attention to “the political, ethical, and social choices that have been made throughout its
development” [4].

One of the major differences between the open Web and social media platforms is in their attitude
toward openness. Berners-Lee’s original conception of the Web as a network of linked documents
was open in that (1) a document could be accessed by anyone who knew its URL, and (2) anyone
could put a document online without having to first seek permission. In contrast, he has argued
that much content on Web platforms is enclosed in ‘walled gardens’ or ‘silos’ [2]. This means that
rather than being able to access content simply by knowing its URL, one has create an account with
the platform hosting that content. Creating an account with most platforms requires agreeing to a
Terms of Service (TOS) agreement, challenging the ‘permissionless’ quality of the Web. Although
platforms have generally lowered technical and expertise barriers for participation online, they
reserve a right to revoke access to uses and users they deem illegitimate [e.g. 18]. Platforms have
nurtured new forms of communication among people from all over the world, but the openness
provided by these tools is contingent upon centralized gatekeepers.

Montfort and Bogost [31] and Helmond [20] have advocated using a material-technical perspec-
tive of platforms to investigate “the connection between technical specifics and culture” [3]. One of
the key technical features of Web platforms is their programmability through APIs. This article

Bridging the Open Web and APIs 5

focuses on this computational dimension to examine developers’ efforts to interoperate between
platforms and the open Web.

Plantin et al. assert that “digital technologies have made possible a ‘platformization’ of infras-
tructure and an ‘infrastructuralization’ of platforms” [35]. They explain that infrastructure studies
emphasizes “ubiquity, reliability, invisibility, gateways, and breakdown” while platform studies
highlights “programmability, affordances and constraints, connection of heterogeneous actors,
and accessibility of data and logic through application programming interfaces (APIs)” [35]. To
account for the convergence of infrastructures and platforms, they call for a combination of both
perspectives. This is particularly significant for studying an artifact like Bridgy, that explicitly joins
the open web to platform APIs.

3 METHOD

As with most IndieWeb projects, Bridgy is open source and hosted on GitHub, a platform for
software code and other version-controlled repositories. GitHub repositories include a detailed
history of revisions to source code and other documents, making it possible to identify how a project
has changed over time. Individual changes are published as “commits” and discussion threads about
new features and bugs are archived as “issues.” Issues provide an apt entry-point for investigating
Bridgy’s connections to other systems. First, they highlight breakdowns, since many of issues
literally describe errors, bugs, and other problems with Bridgy. Second, they present traces of the
work that was conducted to resolve these breakdowns. In many cases, these discussions reference
specific commits in which an issue was addressed or resolved. As a result, it can be possible to
observe deliberation in developer discussions about issues, and then identify ways in which issues
were addressed through code.

I downloaded copies of Bridgy’s issues for analysis.! Between the earliest item (January 4,
2014) and the time of downloading (March 5, 2018), there were 799 issues. I then performed a
keyword search to get a general sense of how many issues pertained to each platform, with the
following results: Twitter (N=316), Facebook (N=278), Google (N=165), Instagram (N=99), Flickr
(N=50), Blogger (N=32).2 This is not an exact measure because the presence of a keyword does
not guarantee that the issue actually pertains to that platform, and some keywords are ambiguous
(“Google” can refer to a variety of products, and Bridgy only has an API relationship with Google
Plus). Nonetheless, this preliminary query contributes a rough sketch of where Bridgy has had the
most issues in relation to corporate platforms.

I selected issues involving Facebook for further analysis because (1) they represent a significant
proportion of Bridgy’s total issues, and (2) Facebook’s large scope means it demonstrates many
different types of interactions and potential problems. In an interview, Bridgy’s creator indicated
that Facebook is a good representation of Bridgy’s relationship with corporate Web platforms (silos)
more generally: “Any feature in any silo, Facebook has it too. And then they also have ten or a
hundred thousand features that silo doesn’t. There aren’t many concerns that you don’t see in
Facebook.”

A first pass reading of the 278 issues that included the term “Facebook” revealed that 147 of
them described some sort of problem or feature request related to Facebook’s APIL. I then used
open coding to organize the issues into categories that described types of problems that were most
prominent. Where possible, I followed links to code commits that were referenced in the issue

IThe script used for downloading GitHub issues is available at (removed for peer review).
2 At the time of this study, Bridgy had recently added compatibility for syndicating to and from GitHub. This feature was
not included in this study because it was brand new and lacked a significant number of issues for analysis.

6 Jack Jamieson

discussions, which assisted in identifying how Bridgy’s developers responded to different types of
challenges.

While studying GitHub data, I was mindful for potential pitfalls presented by Kalliamvakou et al.
[27]. While most of these pitfalls refer to large-scale quantitative studies, and so are not relevant
to this study, I will address two pitfalls that needed to be considered. First, like many projects,
Bridgy is not contained wholly within a single repository, instead relying on pieces from other
repositories to perform some of its functions. Studying a single repository without considering
its dependencies can lead to an incomplete understanding. A benefit of treating Bridgy’s issues
as the entry for this study is that the issues posted to the main Bridgy repository often reference
commits to its dependencies. Therefore, it was possible to start with Bridgy and expand outward to
its dependencies, avoiding a potential blind spot.

Second, GitHub projects almost always involve development and discussion occurring outside of
the GitHub platform. Accordingly, this study is supplemented by ongoing participant-observation
of IndieWeb’s developer community and a semi-structured interview with Bridgy’s creator and lead
developer, Ryan Barrett. This interview served to verify my assessment of the technical challenges
and approaches as discovered through analysis of its GitHub repository, as well as to develop a
richer understanding of Barrett’s motivations and experiences.

4 FINDINGS

The issues reported on Bridgy’s GitHub reference a wide variety of topics. However, three types of
problems emerged as the most substantial and recurring causes of breakdowns. Below, I summarize
these problems as well as ways in which developers responded to them.

4.1 Mapping between URLs and API IDs

When syndicating between personal Web sites and Facebook, Bridgy spans a threshold between the
open Web and platform APIs. The most prominent challenge in Bridgy’s development history has
been translating between different ways of addressing an object across this boundary. Objects on
the open Web are addressed using URLs, such as http://facebook.com/{user-id}/{object-id}, whereas
the same object could be identified within Facebook’s API using an ID in a format such as {user-
id}_{object-id).

In some instances, it is straightforward to translate between these formats. In the example above,
one can see how it could be possible to map between these identifiers using {user-id} and {object-id).
However, this mapping is often quite difficult for a variety of reasons. The first reason is that
Facebook IDs come in a several different formats, represented in Table 1 based on a comment
in Bridgy’s source code. Bridgy’s developers struggled to predict a rationale for which format is
required in different cases, and Bridgy’s code resorts to a sequence of guessing and trial and error
to find the correct format.

Mapping between URLs and API IDs became more difficult in 2014, when Facebook released
version 2.0 of its APL This update limited the amount of data third-party developers could access.
In 2018, When Facebook CEO Mark Zuckerberg testified before the U.S. House of Representatives
Committee on Energy and Commerce about Cambridge Analytica’s collection of Facebook users’
data, he asserted that this update “makes it so a developer today can’t do what Kogan [the developer
who shared data from his app with Cambridge Analytica] did years ago” [45]. One of the changes was
the introduction of app-scoped user IDs, which mean that each third-party app is given a different
ID for the same user. This improves Facebook users’ privacy and security because it frustrates
efforts to combine data collected by multiple apps. However, this also complicates Bridgy’s efforts
to map between a URL on Facebook.com and the corresponding object in Facebook’s API.

Bridging the Open Web and APIs 7

Table 1. Types of formats for Facebook IDs

Format Example
“Simple number, usually a user or post” 12
“Two numbers with underscore, usually 12_34

POST_COMMENT or USER_POST”

“Three numbers with underscores, 12_34 56
USER_POST COMMENT”

“Three numbers with colons, 12:34:56
USER:POST:SHARD”
“Four numbers with colons/underscore, 12:34:56_56

USER:POST:SHARD_COMMENT”

This led a notable reduction in Bridgy’s capabilities. Prior to this update, Bridgy could be used
to like a Facebook post from one’s own website, without visiting Facebook directly. To do so, one
would write a post to their website that linked to a Facebook post and included Microformats 2
markup to designate the post as a “like”. For example, a post might include the following HTML:

Alice liked a post on Facebook.

Bridgy could interpret the post’s HTML and, if the URL points to a post on Facebook.com, could
find the matching object in Facebook’s API and then post a “like” on the user’s behalf. The reason
this is no longer possible is that URLs on Facebook.com refer to users by either their username or a
global user ID, and neither of these identifiers can be mapped to the app-scoped ID Bridgy must use
when navigating Facebook’s APL As a result, Bridgy’s developers removed support for this feature.

Although Bridgy’s ability to syndicate likes from a personal website to a Facebook account was
removed, in most cases Bridgy has been successful at mapping between URLs and API IDs, albeit
with considerable effort. From Facebook’s perspective, IDs are intended to be taken as opaque
objects, and Bridgy’s attempts to decode them are not supported. Facebook support has advised
Bridgy’s developers, “Please treat IDs as unique strings, they are not meant to be broken down
and used” [13]. However, it is only when broken down and used that these IDs can be translated in
URLs. To accomplish this, Bridgy relies on heuristics and trial and error, as explained by its lead
developer:

There’s no consistent way, either through the API or through an algorithm you implement
yourself, to say, ‘Here is a Facebook post, what is its permalink on Facebook.com?’ We have to
guess at that with a surprising number of heuristics. Not ideal. So that mapping back and forth
between the Web and data inside Facebook has been the single biggest question. Bridging the open
Web with Facebook’s API necessitates reconciling different meanings and expectations on either
side. Boundary objects are one way to address differences in the meaning of Facebook content
across this divide. Boundary objects acts as “a means of translation” across multiple communities
of practice [5], meeting local requirements while also maintaining a common identity. This allows
different groups to work together in the absence of consensus by “tacking” back and forth between
an object’s general form, which is meaningful across communities, and specific forms of the object
tailored to meet local needs [40]. Bridgy and Facebook share a general understanding of IDs as a
means of referring to objects, but differ significantly in their local expectations of how IDs should
be used. As a result, Bridgy uses heuristics, trial and error, and similar methods to fit the shared

8 Jack Jamieson

general understanding of IDs with its local requirements. This is an example of articulation work,
“the continuous efforts required in order to bring together discontinuous elements” [41]. Creating
systems that interoperate requires significant investments of time and energy on relatively invisible
work.

4.2 Mapping privacy from front-end to back-end

There are two main mechanisms for users to control who accesses their data on Facebook. First,
they may use Facebook’s privacy settings to specify an audience that can view their posts and other
information on Facebook.com or in the Facebook app. Options include “Public”, “Friends”, “Friends
except...”, “Specific friends”, and “Only me”” Second, whenever a third-party app such as Bridgy
wants to access Facebook data, users must grant it permission. For example, to access a user’s posts
and photos, a third-party app will display a notice that the app will receive “your timeline posts and
photos” — If the user agrees, the app will be granted the user_posts and user_photos permissions
and will be able to access that data in Facebook’s API.

These two privacy mechanisms work independently. Notably, there is no way to grant a third-
party developer access to public photos, but not to photos intended for friends only. As a result, it
has been up to third-party developers to manage their treatment of posts with different audiences.
This is significant for Bridgy because it processes only public data. When Bridgy retrieves data
from Facebook to one’s personal website, it publishes a publicly visible copy of that interaction on
Bridgy’s website. This is necessary to assign each interaction a URL, which is required to send a
valid Webmention.

When accessing content in Facebook’s API, Bridgy checks its privacy status and ignores any
content not marked explicitly as ‘public. Barrett commented on this process:

That is non-trivial to determine for a given object in the Facebook AP, is it public? I
mean usually, 90% of the time, it’s straightforward. Another 9% it takes some work, but
you can figure it out, again depending on the type. it’s like 1% or maybe 0.1% where
you actually can’t tell. You look at the inheritance chain, you look at a bunch of other
stuff, and you just don’t know. If you go look at the UI [User Interface] in Facebook,
you can usually tell. But programmatically you can’t. And so when that happens, I
have to err on the side of not doing anything with it.

The most striking example of this difficulty occurs with some photos uploaded to Facebook. In
Facebook’s API, photos themselves do not possess a privacy status. Instead, each photo is part
of a parent post and/or album, which contains a privacy field indicating the intended audience.?
Therefore, determining the privacy status for a photo in Facebook’s requires one to check this
parent.

When someone posts multiple photos in a short period of time, Facebook creates a parent post
representing all of them as a group, even if the individual photos have distinct privacy settings. In
these cases, the parent post may have a privacy status of “CUSTOM”. In a Github issue, Barrett
explained that Facebook’s documentation “[does not] say anything about what CUSTOM with no
details means.”* As a result, there are rare cases when it is not possible for Bridgy to determine
the privacy status of an object in the API, even if it would be apparent through Facebook’s user
interface. Archived discussions between Bridgy’s developers and Facebook support suggest that
this problem is related to Bridgy’s unconventional way of navigating Facebook’s API, highlighting
how efforts to repurpose platforms can surface hidden features of their systems [12].

3The privacy field for an object in Facebook’s specifies a privacy setting among these options: EVERYONE, ALL_FRIENDS,
FRIENDS_OF_FRIENDS, SELF, CUSTOM.
4https://github.com/snarfed/bridgy/issues/611#issuecomment-174315265

Bridging the Open Web and APIs 9

To avoid accidentally publishing non-public data, Bridgy’s approach is to ignore any data that is
not explicitly marked as public. This has led to cases where Bridgy fails to process content that is
intended to be public if the privacy setting in Facebook’s API is unclear. This has been interpreted
by multiple users as a bug on Bridgy’s part, since the data is marked as public in Facebook’s user
interface and yet was ignored by Bridgy.

This example helps position the importance of privacy in Bridgy’s design. IndieWeb is generally
less concerned with privacy than some other alternative social media, as evidenced by practices
such as syndicating content to corporate platforms and the fact that IndieWeb sites are almost
always publicly accessible and indexable by search-engines. However, even though Bridgy does
little to enhance individuals’ privacy, it is designed to avoid infringing upon existing privacy
expectations. Shilton et al’s [38] sociotechnical dimensions of values provide axes for describing
the place of privacy in Bridgy’s design: Salience (peripheral to central), intention (accidental to
purposive), and enactment (potential to performed). In many use-cases, privacy is a potential rather
than performed value in Bridgy, since the software usually deals with public data. When there is a
potential infringement, however, it becomes clear that privacy has a high salience and intention,
since it supersedes Bridgy’s proper functioning. The result is a value dam [30] where privacy is
so central to Bridgy’s lead developer that he opposes conflicting designs, even when it limits the
software’s perceived efficacy.

4.3 Precarity and APl updates

APIs can change quickly and unpredictably. While this study was underway, Facebook issued
substantial API updates to improve its security and privacy in light of the Cambridge Analytica
scandal. These updates, removed the ability for third-party apps to publish content to one’s Facebook
account (Archibong, 2018), which meant that Bridgy could no longer syndicate from one’s website
to Facebook. A subsequent update introduced restrictions that limited Bridgy’s ability to send
comments and likes from Facebook back to one’s website. As a result, Bridgy dropped support for
Facebook altogether [1].

Until 2018, the precarity of Bridgy’s relationship with Facebook was somewhat subtle. For the
most part, Bridgy’s developers had been able to maintain functionality with Facebook’s API, albeit
with considerable expertise and effort. By studying Bridgy’s development history, this study was
able to illuminate the labour of responding to API updates, and particularly the decision-making to
preserve values such as privacy. As reliance on third-party APIs has become a prominent feature
of software development, the impact of API updates have been investigated in several studies
[11, 21, 44]. Nonetheless, excepting those who experience bugs or participate in development
processes, the precarity of Bridgy and other software that rely on third-party APIs is often hidden.

During our interview, Barrett was quick to assert that problems he encountered with Facebook’s
API were not a result of malice. Rather, “in many ways what Bridgy is doing is not at all what
Facebook expects the average Facebook app to do.” Further, he asserted that an app like Bridgy is
simply too small to be a concern for Facebook, citing his past work experiences as a senior engineer
at Google: “T have seen some it at the inside of Google. For things that aren’t security breaches—you
know for apps that are just doing funny things that may or may not be against your TOS [terms of
service]—if they’re small enough you don’t care” The development history of Bridgy indicates that
Facebook and similar platforms are not actively attempting to prevent Bridgy’s style of syndication.
In fact, in the past Facebook has solicited work on a similar tool from software developer and open
Web advocate Dave Winer [26]. In this case, it is unlikely that anyone at Facebook was specifically
motivated to restrict services like Bridgy. Instead, Facebook’s attitude toward Bridgy could be
characterized as indifference.

10 Jack Jamieson

This indifference creates opportunities for experimentation and innovation, but as demonstrated
by Facebook’s dramatic API updates in 2018, also cultivates substantial risk. Another IndieWeb
developer who created a commercial service with similar syndication features as Bridgy has written
that reliance on platform APIs had been an obstacle, especially from a business perspective, “Back
when I was working on Known, investors would ask about the supplier risk of being so heavily
dependent on third party APIs to provide a lot of the core value. They were right” [42].

One of the goals of this study was to consider how skilled developers might have agency to contest
platform features with which they disagree, rather than simply opting out or proposing wholly
separate alternatives. Although Bridgy was, for a time, successful at navigating its relationship
with Facebook, the pressure of the Cambridge Analytica scandal prompted a set of restrictions
in Facebook’s API that Bridgy could not accommodate. Third-party developers who use platform
APIs can build upon platforms with greater strategic agency than users who take the system as-is,
but still must work within the affordances of tools provided by platform operators.

5 DISCUSSION AND CONCLUSION

Investigating challenges in Bridgy’s development from 2014 through 2018 presents a novel per-
spective of how Facebook’s API impacted third-party developers during this period. The examples
highlighted in this paper demonstrate key challenges for alternative social media, particularly those
that attempt to maintain combatibility with existing systems. This is not only important for cases
like Bridgy that interoperate directly with platform APIs, but also for any system that attempts to
work across internet infrastructures.

Attempts to work across the open Web and platforms must confront distinct logics of identifying
and addressing resources. In Bridgy’s case, these logics could usually be managed through heuristics
and other forms of articulation work. Such challenges cannot be resolved outright but instead
require ongoing maintenance and repair. Additionally, difficulty determining the privacy status of
some objects led to an ethical dilemma, although this was relatively rare. The result was to preserve
users’ privacy with a design that compromised Bridgy’s functionality. And ultimately, although
most updates could be navigated, major changes to Facebook’s API in 2018 led Bridgy’s developers
to drop support for Facebook altogether.

Beyond the scope of alternative social media, Bridgy’s responses to these challenges hold lessons
for any who use platform APIs, such as computational researchers studying social media. Internet
researchers have warned that Facebook’s API restrictions present significant obstacles for critical
and public-interest research about platforms [8]. Freelon [14] proposed that researchers should
incorporate Web scraping into their data collection, and highlighted technical, legal, and ethical
considerations for doing so. Bridgy’s translation between IndieWeb sites and platform APIs relies on
scraping and then parsing HTML that has been structured for machine-readability. The challenges
posed during this translation highlight additional factors for researchers considering Web scraping.
App-scoped IDs for API objects may not be mappable to URLs used to identify the same data on
the Web, which may hinder analysis between Web scraped and API-based datasets. Conversely,
because the privacy status of some Facebook posts may be presented unclearly in the API, Web
scraped data may provide a clearer sense of users’ privacy expectations, as long as these are clearly
presented on a platform’s front-end. However, researchers should still be mindful of users’ lack of
clarity of these settings even when visible in a platform’s interface [6, 28]. Finally, since platform
HTML is unlikely to be structured with machine-readability in mind, Web scraping can require
significant planning and setup. Coupled with the frequency at which platforms can update their
data structures or front-end layouts, this poses a special challenge for longitudinal studies that
incorporate Web scraping.

Bridging the Open Web and APIs 1

Given the extent of platformization, many systems and tools must co-exist with corporate
platforms to some extent. Builders of alternative social media propose different social and technical
arrangements than corporate platforms. While this leads to challenges, builders of alternative social
media push at the boundaries of existing systems, revealing points at which these systems can be
adapted. As technologists and researchers ponder ways to improve the ethical conditions of future
social media, understanding how existing systems may accept or resist specific forms of change
can help us plan for achievable and sustainable projects.

5.1 Limitations and future work

The methods used in this study are contingent upon the thoroughness in which issues are docu-
mented in Bridgy’s GitHub repository, which may limit their utility in other contexts. Additionally,
this study’s reliance on GitHub for its primary data source limits its ability to identify phenomena
that are only observable elsewhere. Future work will investigate interoperation among a broader
set of related systems.

ACKNOWLEDGMENTS

This research was supported by the Social Sciences and Humanities Research Council of Canada.

REFERENCES

[1] Ryan Barrett. 2018. RIP Facebook for Bridgy. https://snarfed.org/2018-08-03_rip-facebook-for-bridgy

[2] Tim Berners-Lee. 2010. Long Live the Web. Scientific American 303, 6 (2010), 80-85. http://www.nature.com/
scientificamerican/journal/v303/n6/full/scientificamerican1210-80.html

[3] Ian Bogost and Nick Montfort. 2009. Platform Studies: Frequently Questioned Answers. Digital Arts and Culture (2009),
7.

[4] Geoffrey C. Bowker, Karen Baker, Florence Millerand, and David Ribes. 2009. Toward Information Infrastructure
Studies: Ways of Knowing in a Networked Environment. In International Handbook of Internet Research, Jeremy
Hunsinger, Lisbeth Klastrup, and Matthew Allen (Eds.). Springer Netherlands, Dordrecht, 97-117. http://link.springer.
com/10.1007/978-1-4020-9789-8_5

[5] Geoffrey C. Bowker and Susan Leigh Star. 2000. Sorting Things out: Classification and Its Consequences. The MIT Press,

Cambridge, Mass.

danah boyd and Eszter Hargittai. 2010. Facebook Privacy Settings: Who Cares? First Monday 15, 8 (July 2010).

https://doi.org/10.5210/fm.v15i8.3086

Bridgy. 2018. About - Bridgy. https://brid.gy/about

[8] Axel Bruns. 2018. Facebook Shuts the Gate after the Horse Has Bolted, and Hurts Real Research in the Process. https:
//policyreview.info/articles/news/facebook- shuts- gate- after-horse-has-bolted-and-hurts-real-research-process/786
[9] Tantek Celik. 2014. Why We Need the IndieWeb. https://www.youtube.com/watch?v=HNmKO7Gr4TE
[10] Tantek Celik. 2016. State of the IndieWeb. https://www.youtube.com/watch?v=7zTolqW_I2g
[11] Tiago Espinha, Andy Zaidman, and Hans-Gerhard Gross. 2014. Web API Growing Pains: Stories from Client Developers
and Their Code. In Software Maintenance, Reengineering and Reverse Engineering (CSMR-WCRE), 2014. IEEE, Antwerp,
Belgium, 84-93. https://doi.org/10.1109/CSMR-WCRE.2014.6747228
[12] Facebook for Developers. [n. d.]. Post Not Returning with Correct Privacy. https://developers.facebook.com/bugs/
983622558349347/
[13] Facebook for Developers. [n. d.]. Unusually Formatted Comment Ids (with Colons) Returned by /Me/Posts. https:
//developers.facebook.com/bugs/786903278061433/

[14] Deen Freelon. 2018. Computational Research in the Post-API Age. Political Communication 35, 4 (Oct. 2018), 665-668.

https://doi.org/10.1080/10584609.2018.1477506
[15] Batya Friedman and Peter H. Kahn. 2003. Human Values, Ethics, and Design. In Handbook of Human-Computer
Interaction, J Jacko and A Sears (Eds.). Lawrence Erlbaum Associates, Mahwah, NJ, 1177-1201.

[16] Robert W. Gehl. 2015. The Case for Alternative Social Media. Social Media + Society 1, 2 (2015), 1-12. https:
//doi.org/10.1177/2056305115604338

[17] James J. Gibson. 1986. The Theory of Affordances. In The Ecological Approach to Visual Perception. Lawrence Erlbaum
Associates, Publishers, Hillsdale, New Jersey, 127-143.

— —_
~ k=
— —

https://snarfed.org/2018-08-03_rip-facebook-for-bridgy
http://www.nature.com/scientificamerican/journal/v303/n6/full/scientificamerican1210-80.html
http://www.nature.com/scientificamerican/journal/v303/n6/full/scientificamerican1210-80.html
http://link.springer.com/10.1007/978-1-4020-9789-8_5
http://link.springer.com/10.1007/978-1-4020-9789-8_5
https://doi.org/10.5210/fm.v15i8.3086
https://brid.gy/about
https://policyreview.info/articles/news/facebook-shuts-gate-after-horse-has-bolted-and-hurts-real-research-process/786
https://policyreview.info/articles/news/facebook-shuts-gate-after-horse-has-bolted-and-hurts-real-research-process/786
https://www.youtube.com/watch?v=HNmKO7Gr4TE
https://www.youtube.com/watch?v=7zTolqW_I2g
https://doi.org/10.1109/CSMR-WCRE.2014.6747228
https://developers.facebook.com/bugs/983622558349347/
https://developers.facebook.com/bugs/983622558349347/
https://developers.facebook.com/bugs/786903278061433/
https://developers.facebook.com/bugs/786903278061433/
https://doi.org/10.1080/10584609.2018.1477506
https://doi.org/10.1177/2056305115604338
https://doi.org/10.1177/2056305115604338

12

[18]

[19]
[20]

[21]

[22]

[23]
[24]

[25]
[26]

[27]

[28]

[29]

[30]

[31]
[32]

[33]
[34]

Jack Jamieson

Oliver L. Haimson and Anna Lauren Hoffmann. 2016. Constructing and Enforcing "Authentic" Identity Online:
Facebook, Real Names, and Non-Normative Identities. First Monday 21, 6 (June 2016). http://firstmonday.org/ojs/
index.php/fm/article/view/6791

Harry Halpin. 2018. Decentralizing the Social Web: Can Blockchains Solve Ten Years of Standardization Failure of the
Social Web?. In INSCI’2018- 5th International Conference ’Internet Science’. St. Petersburg, Russia, 16.

Anne Helmond. July-December 2015. The Platformization of the Web: Making Web Data Platform Ready. Social Media
+ Society 1, 2 (July-December 2015), 1-11. https://doi.org/10.1177/2056305115603080

Andre Hora, Romain Robbes, Nicolas Anquetil, Anne Etien, Stephane Ducasse, and Marco Tulio Valente. 2015. How
Do Developers React to API Evolution? The Pharo Ecosystem Case. In Software Maintenance and Evolution (ICSME),
2015 IEEE International Conference On. IEEE, 251-260. https://doi.org/10.1109/ICSM.2015.7332471

Lara Houston, Steven J. Jackson, Daniela K. Rosner, Syed Ishtiaque Ahmed, Meg Young, and Laewoo Kang. 2016.
Values in Repair. In CHI ’16 Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems. ACM
Press, 1403-1414. https://doi.org/10.1145/2858036.2858470

Lee Humphreys. 2005. Reframing Social Groups, Closure, and Stabilization in the Social Construction of Technology.
Social Epistemology 19, 2-3 (Jan. 2005), 231-253. https://doi.org/10.1080/02691720500145449

IndieWeb.org. 2018. Home. https://indieweb.org/

IndieWeb.org. 2018. IndieWeb. https://indieweb.org/IndieWeb

Mathew Ingram. 2014 Don’t like Facebook Owning and Controlling Your Con-
tent? Use Tools That Support the Open Web. https://gigaom.com/2014/09/03/

dont-like-facebook-owning-and-controlling-your-content-use-tools-that-support-the-open-web/

Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel M. German, and Daniela Damian. 2016.
An In-Depth Study of the Promises and Perils of Mining GitHub. Empirical Software Engineering 21, 5 (Oct. 2016),
2035-2071. https://doi.org/10.1007/s10664-015-9393-5

Yabing Liu and Krishna P Gummadi. November 02 - 04, 2011. Analyzing Facebook Privacy Settings: User Expectations
vs. Reality. In Proceedings of the 2011 ACM SIGCOMM Conference on Internet Measurement Conference. Berlin, Germany,
61-70.

Geert Lovink and Miriam Rasch (Eds.). 2013. Unlike Us Reader: Social Media Monopolies and Their Alternative. Number 8
in Inc Reader. Inst. of Network Cultures, Amsterdam. OCLC: 840018305.

Jessica K. Miller, Batya Friedman, Gavin Jancke, and Brian Gill. 2007. Value Tensions in Design: The Value Sensitive
Design, Development, and Appropriation of a Corporation’s Groupware System. In Proceedings of the 2007 International
ACM Conference on Supporting Group Work (GROUP ’07). ACM, New York, NY, USA, 281-290. https://doi.org/10.1145/
1316624.1316668

Nick Montfort and Ian Bogost. 2009. Racing the Beam: The Atari Video Computer System. MIT Press, Cambridge.
https://mitpress.mit.edu/books/racing-beam

Donald A. Norman. 1999. Affordance, Conventions, and Design. interactions 6, 3 (1999), 38-43. http://dl.acm.org/
citation.cfm?id=301168

Tim O’Reilly. 2005. What Is Web 2.0. http://www.oreilly.com/pub/a/web2/archive/what-is-web-20.html?page=1
Aaron Parecki. 2017. Webmention. https://www.w3.0rg/TR/webmention/

[35] Jean-Christophe Plantin, Carl Lagoze, Paul N. Edwards, and Christian Sandvig. 2016. Infrastructure Studies Meet

[36]
[37]
[38]

[39]
[40]

[41]

[42]

[43]

Platform Studies in the Age of Google and Facebook. new media & society (2016), 1-18. http://nms.sagepub.com/
content/early/2016/08/02/1461444816661553.abstract

Christian Sandvig. 2013. The Internet as Infrastructure. In The Oxford Handbook of Internet Studies, William H. Dutton
(Ed.). Oxford University Press, Oxford.

Mirko Tobias Schafer. 2011. Bastard Culture!: How User Participation Transforms Cultural Production. Amsterdam
University Press, Amsterdam.

K. Shilton. 2013. Values Levers: Building Ethics into Design. Science, Technology & Human Values 38, 3 (May 2013),
374-397. https://doi.org/10.1177/0162243912436985

Clay Shirky. 2008. Here Comes Everybody: The Power of Organizing without Organizations. Penguin, New York.
Susan Leigh Star. 2010. This Is Not a Boundary Object: Reflections on the Origin of a Concept. Science, Technology &
Human Values 35, 5 (Sept. 2010), 601-617. https://doi.org/10.1177/0162243910377624

Lucy Suchman. 1996. Supporting Articulation Work. In Computerization and Controversy, Rob Kling (Ed.). Academic
Press, San Diego, CA, 407-423. http://books.google.com/books/about/Computerization_and_Controversy.html?id=
9wIN9eOomacC

Ben Werdmiiller. 2018. I'm Done with Syndication. Let’s Help People Be Themselves on the Web. https://werd.io/
2018/im-done-with-syndication-lets-help-people-be-themselves-on

Langdon Winner. 1980. Do Artifacts Have Politics? In Daedalus. http://www.jstor.org/stable/10.2307/20024652

http://firstmonday.org/ojs/index.php/fm/article/view/6791
http://firstmonday.org/ojs/index.php/fm/article/view/6791
https://doi.org/10.1177/2056305115603080
https://doi.org/10.1109/ICSM.2015.7332471
https://doi.org/10.1145/2858036.2858470
https://doi.org/10.1080/02691720500145449
https://indieweb.org/
https://indieweb.org/IndieWeb
https://gigaom.com/2014/09/03/dont-like-facebook-owning-and-controlling-your-content-use-tools-that-support-the-open-web/
https://gigaom.com/2014/09/03/dont-like-facebook-owning-and-controlling-your-content-use-tools-that-support-the-open-web/
https://doi.org/10.1007/s10664-015-9393-5
https://doi.org/10.1145/1316624.1316668
https://doi.org/10.1145/1316624.1316668
https://mitpress.mit.edu/books/racing-beam
http://dl.acm.org/citation.cfm?id=301168
http://dl.acm.org/citation.cfm?id=301168
http://www.oreilly.com/pub/a/web2/archive/what-is-web-20.html?page=1
https://www.w3.org/TR/webmention/
http://nms.sagepub.com/content/early/2016/08/02/1461444816661553.abstract
http://nms.sagepub.com/content/early/2016/08/02/1461444816661553.abstract
https://doi.org/10.1177/0162243912436985
https://doi.org/10.1177/0162243910377624
http://books.google.com/books/about/Computerization_and_Controversy.html?id=9wlN9eOomacC
http://books.google.com/books/about/Computerization_and_Controversy.html?id=9wlN9eOomacC
https://werd.io/2018/im-done-with-syndication-lets-help-people-be-themselves-on
https://werd.io/2018/im-done-with-syndication-lets-help-people-be-themselves-on
http://www.jstor.org/stable/10.2307/20024652

Bridging the Open Web and APIs 13

[44] Laerte Xavier, Aline Brito, Andre Hora, and Marco Tulio Valente. 2017. Historical and Impact Analysis of API Breaking
Changes: A Large-Scale Study. In Software Analysis, Evolution and Reengineering (SANER), 2017 IEEE 24th International
Conference On. IEEE, Klagenfurt, Austria, 138-147. https://doi.org/10.1109/SANER.2017.7884616

[45] Mark Zuckerberg. 2018. Hearing Before the United States House of Representatives Committee on Energy and
Commerce. https://docs.house.gov/meetings/IF/IF02/20180508/108260/HHRG- 115-IF02- Wstate-BarrettG-20180508.
pdf

https://doi.org/10.1109/SANER.2017.7884616
https://docs.house.gov/meetings/IF/IF02/20180508/108260/HHRG-115-IF02-Wstate-BarrettG-20180508.pdf
https://docs.house.gov/meetings/IF/IF02/20180508/108260/HHRG-115-IF02-Wstate-BarrettG-20180508.pdf

	Abstract
	1 Introduction
	1.1 IndieWeb
	1.2 Syndicating to platforms with Bridgy

	2 Literature review
	2.1 Values and design
	2.2 Infrastructures and platforms

	3 Method
	4 Findings
	4.1 Mapping between URLs and API IDs
	4.2 Mapping privacy from front-end to back-end
	4.3 Precarity and API updates

	5 Discussion and conclusion
	5.1 Limitations and future work

	Acknowledgments
	References

